Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.808
Filtrar
1.
BMC Pulm Med ; 24(1): 130, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491484

RESUMO

Bronchopulmonary dysplasia (BPD) is characterized by alveolar dysplasia, and evidence indicates that interferon regulatory factor 4 (IRF4) is involved in the pathogenesis of various inflammatory lung diseases. Nonetheless, the significance and mechanism of IRF4 in BPD remain unelucidated. Consequently, we established a mouse model of BPD through hyperoxia exposure, and ELISA was employed to measure interleukin-17 A (IL-17 A) and interleukin-6 (IL-6) expression levels in lung tissues. Western blotting was adopted to determine the expression of IRF4, surfactant protein C (SP-C), and podoplanin (T1α) in lung tissues. Flow cytometry was utilized for analyzing the percentages of FOXP3+ regulatory T cells (Tregs) and FOXP3+RORγt+ Tregs in CD4+ T cells in lung tissues to clarify the underlying mechanism. Our findings revealed that BPD mice exhibited disordered lung tissue structure, elevated IRF4 expression, decreased SP-C and T1α expression, increased IL-17 A and IL-6 levels, reduced proportion of FOXP3+ Tregs, and increased proportion of FOXP3+RORγt+ Tregs. For the purpose of further elucidating the effect of IRF4 on Treg phenotype switching induced by hyperoxia in lung tissues, we exposed neonatal mice with IRF4 knockout to hyperoxia. These mice exhibited regular lung tissue structure, increased proportion of FOXP3+ Tregs, reduced proportion of FOXP3+RORγt+ Tregs, elevated SP-C and T1α expression, and decreased IL-17 A and IL-6 levels. In conclusion, our findings demonstrate that IRF4-mediated Treg phenotype switching in lung tissues exacerbates alveolar epithelial cell injury under hyperoxia exposure.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Camundongos , Células Epiteliais Alveolares/patologia , Linfócitos T Reguladores/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Hiperóxia/complicações , Displasia Broncopulmonar/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Fenótipo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
2.
J Ovarian Res ; 17(1): 64, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493179

RESUMO

BACKGROUND: Ovarian cancer (OC) is a severe gynecological malignancy with significant diagnostic and therapeutic challenges. The discovery of reliable cancer biomarkers can be used to adjust diagnosis and improve patient care. However, serous OC lacks effective biomarkers. We aimed to identify novel biomarkers for OC and their pathogenic causes. METHODS: The present study used the differentially expressed genes (DEGs) obtained from the "Limma" package and WGCNA modules for intersection analysis to obtain DEGs in OC. Three hub genes were identified-claudin 3 (CLDN3), interferon regulatory factor 6 (IRF6), and prostasin (PRSS8)-by searching for hub genes through the PPI network and verifying them in GSE14407, GSE18520, GSE66957, and TCGA + GTEx databases. The correlation between IRF6 and the prognosis of OC patients was further confirmed in Kaplan-Miller Plotter. RT-qPCR and IHC confirmed the RNA and protein levels of IRF6 in the OC samples. The effect of IRF6 on OC was explored using transwell invasion and scratch wound assays. Finally, we constructed a ceRNA network of hub genes and used bioinformatics tools to predict drug sensitivity. RESULTS: The joint analysis results of TCGA, GTEx, and GEO databases indicated that IRF6 RNA and protein levels were significantly upregulated in serous OC and were associated with OS and PFS. Cell function experiments revealed that IRF6 knockdown inhibited SKOV3 cell proliferation, migration and invasion. CONCLUSION: IRF6 is closely correlated with OC development and progression and could be considered a novel biomarker and therapeutic target for OC patients.


Assuntos
Biomarcadores Tumorais , Neoplasias Ovarianas , Humanos , Feminino , Prognóstico , Biomarcadores Tumorais/genética , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário , RNA , Fatores Reguladores de Interferon/genética
3.
Chin J Dent Res ; 27(1): 29-38, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546517

RESUMO

Non-syndromic orofacial clefts (NSOCs) are the most common craniofacial malformation. In the complex aetiology and pathogenesis of NSOCs, genetic factors play a crucial role and IRF6, located at chromosome 1q32.2, is the best documented NSOC susceptibility gene. IRF6 is a key factor in oral maxillofacial development and known to contribute the most in NSOCs. It is essential to conduct a complete review of the existing results on IRF6 to further understand its role in the pathogenesis of NSOCs. Thus, the present authors summarised the research progress on the mechanism of IRF6 in NSOCs from both genetic and functional perspectives in this review.


Assuntos
Fenda Labial , Fissura Palatina , Humanos , Fenda Labial/genética , Fissura Palatina/genética , Cromossomos Humanos Par 2 , Desenvolvimento Maxilofacial , Fatores Reguladores de Interferon/genética
4.
Clin Immunol ; 262: 110194, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508295

RESUMO

Pathologic type I interferon (T1IFN) expression is a key feature in systemic lupus erythematosus (SLE) that associates with disease activity. When compared to adult-onset disease, juvenile-onset (j)SLE is characterized by increased disease activity and damage, which likely relates to increased genetic burden. To identify T1IFN-associated gene polymorphisms (TLR7, IRAK1, miR-3142/miR-146a, IRF5, IRF7, IFIH1, IRF8, TYK2, STAT4), identify long-range linkage disequilibrium and gene:gene interrelations, 319 jSLE patients were genotyped using panel sequencing. Coupling phenotypic quantitative trait loci (QTL) analysis identified 10 jSLE QTL that associated with young age at onset (<12 years; IRAK1 [rs1059702], TLR7 [rs3853839], IFIH1 [rs11891191, rs1990760, rs3747517], STAT4 [rs3021866], TYK2 [rs280501], IRF8 [rs1568391, rs6638]), global disease activity (SLEDAI-2 K >10; IFIH1 [rs1990760], STAT4 [rs3021866], IRF8 [rs903202, rs1568391, rs6638]), and mucocutaneous involvement (TLR7 [rs3853839], IFIH1 [rs11891191, rs1990760]). This study suggests T1IFN-associated polymorphisms and gene:gene interrelations in jSLE. Genotyping of jSLE patients may allow for individualized treatment and care.


Assuntos
Interferon Tipo I , Lúpus Eritematoso Sistêmico , MicroRNAs , Adulto , Humanos , Criança , Helicase IFIH1 Induzida por Interferon , Interferon Tipo I/genética , Epistasia Genética , Receptor 7 Toll-Like/genética , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/complicações , Fatores Reguladores de Interferon/genética
5.
Biochemistry ; 63(6): 767-776, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38439718

RESUMO

Interferon regulatory factor 4 (IRF4) is a crucial transcription factor that plays a vital role in lymphocyte development, including in the fate-determining steps in terminal differentiation. It is also implicated in the development of lymphoid tumors such as multiple myeloma and adult T-cell leukemia. IRF4 can form a homodimer and multiple heterocomplexes with other transcription factors such as purine-rich box1 and activator protein 1. Each protein complex binds to specific DNA sequences to regulate a distinct set of genes. However, the precise relationship among these complex formations remains unclear. Herein, we investigated the abilities of IRF4 proteins with functional mutations in the IRF-association domain and autoinhibitory region to form complexes using luciferase reporter assays. The assays allowed us to selectively assess the activity of each complex. Our results revealed that certain IRF-association domain mutants, previously known to have impaired heterocomplex formation, maintained or even enhanced homodimer activity. This discrepancy suggests that the mutated amino acid residues selectively influence homodimer activity. Conversely, a phosphomimetic serine mutation in the autoinhibitory region displayed strong activating effects in all complexes. Furthermore, we observed that partner proteins involved in heterocomplex formation could disrupt the activity of the homodimer, suggesting a potential competition between homocomplexes and heterocomplexes. Our findings provide new insights into the mechanistic function of IRF4.


Assuntos
Regulação da Expressão Gênica , Fatores Reguladores de Interferon , Sequência de Bases , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Mutação , Fator de Transcrição AP-1/metabolismo , Humanos , Células HEK293
6.
Front Biosci (Landmark Ed) ; 29(3): 115, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38538259

RESUMO

BACKGROUND: Postmenopausal osteoporosis (PMOP) is a prevalent disease, which features decreased bone mass, bone weakness and deteriorated bone microstructure in postmenopausal women. Although many factors have been revealed to contribute to the occurrence of PMOP, its mechanism remains undefined. This work aimed to identify significant changes in gene expression during PMOP formation and to examine the most valuable differential genes in postmenopausal osteoporosis versus the control group. METHODS: The GSE68303 dataset that contains 12 ovariectomize (OVX) experimental and 11 sham groups was downloaded and analyzed. The results indicated that interferon regulatory factor 4 (IRF4) might be a hub gene in the development of postmenopausal osteoporosis. Western blot and immunohistochemistry were carried out to evaluate IRF4 levels in thoracic vertebra extracts from OVX and Sham mice. To assess IRF4's impact on osteogenic differentiation in postmenopausal bone marrow mesenchymal stem cells (BM-MSCs), IRF4 overexpression (OV-IRF4) and knockdown (Sh-IRF4) plasmids were constructed. RESULTS: The results showed that comparing with the sham group, bone samples from the OVX group showed higher IRF4 expression. Alkaline phosphatase (ALP) staining revealed that IRF4 overexpression significantly inhibited ALP activity, while IRF4 knockdown promoted ALP activity in BM-MSCs. Simvastatin-treated OVX mice showed increased total bone volume/total tissue volume (BV/TV) and elevated Runx2 expression by immunohistochemical staining compared with the OVX group. CONCLUSIONS: This study demonstrated that IRF4 is associated with OVX induced osteoporosis, it can regulate bone stability by inhibiting the osteogenic differentiation BM-MSCs. This study may help enhance our understanding of the molecular mechanism of PMOP formation, providing new insights into estrogen defiance induced osteoporosis.


Assuntos
Fatores Reguladores de Interferon , Osteogênese , Osteoporose Pós-Menopausa , Animais , Feminino , Humanos , Camundongos , Diferenciação Celular/fisiologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética , Osteoporose Pós-Menopausa/genética
7.
Cell Rep ; 43(2): 113795, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38367238

RESUMO

Activation of endosomal Toll-like receptor (TLR) 7, TLR9, and TLR11/12 is a key event in the resistance against the parasite Toxoplasma gondii. Endosomal TLR engagement leads to expression of interleukin (IL)-12 via the myddosome, a protein complex containing MyD88 and IL-1 receptor-associated kinase (IRAK) 4 in addition to IRAK1 or IRAK2. In murine macrophages, IRAK2 is essential for IL-12 production via endosomal TLRs but, surprisingly, Irak2-/- mice are only slightly susceptible to T. gondii infection, similar to Irak1-/- mice. Here, we report that upon T. gondii infection IL-12 production by different cell populations requires either IRAK1 or IRAK2, with conventional dendritic cells (DCs) requiring IRAK1 and monocyte-derived DCs (MO-DCs) requiring IRAK2. In both populations, we identify interferon regulatory factor 5 as the main transcription factor driving the myddosome-dependent IL-12 production during T. gondii infection. Consistent with a redundant role of DCs and MO-DCs, mutations that affect IL-12 production in both cell populations show high susceptibility to infection in vivo.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Toxoplasmose , Animais , Camundongos , Células Dendríticas , Fatores Reguladores de Interferon/genética , Interleucina-12
8.
J Dent Res ; 103(3): 318-328, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38343385

RESUMO

Interferon regulatory factor 8 (IRF8), a transcription factor expressed in immune cells, functions as a negative regulator of osteoclasts and helps maintain dental and skeletal homeostasis. Previously, we reported that a novel mutation in the IRF8 gene increases susceptibility to multiple idiopathic cervical root resorption (MICRR), a form of tooth root resorption mediated by increased osteoclast activity. The IRF8 G388S variant in the highly conserved C-terminal motif is predicted to alter the protein structure, likely impairing IRF8 function. To investigate the molecular basis of MICRR and IRF8 function in osteoclastogenesis, we generated Irf8 knock-in (KI) mice using CRISPR/Cas9 technique modeling the human IRF8G388S mutation. The heterozygous (Het) and homozygous (Homo) Irf8 KI mice showed no gross morphological defects, and the development of hematopoietic cells was unaffected and similar to wild-type (WT) mice. The Irf8 KI Het and Homo mice showed no difference in macrophage gene signatures important for antimicrobial defenses and inflammatory cytokine production. Consistent with the phenotype observed in MICRR patients, Irf8 KI Het and Homo mice demonstrated significantly increased osteoclast formation and resorption activity in vivo and in vitro when compared to WT mice. The oral ligature-inserted Het and Homo mice displayed significantly increased root resorption and osteoclast-mediated alveolar bone loss compared to WT mice. The increased osteoclastogenesis noted in KI mice is due to the inability of IRF8G388S mutation to inhibit NFATc1-dependent transcriptional activation and downstream osteoclast specific transcripts, as well as its impact on autophagy-related pathways of osteoclast differentiation. This translational study delineates the IRF8 domain important for osteoclast function and provides novel insights into the IRF8 mutation associated with MICRR. IRF8G388S mutation mainly affects osteoclastogenesis while sparing immune cell development and function. These insights extend beyond oral health and significantly advance our understanding of skeletal disorders mediated by increased osteoclast activity and IRF8's role in osteoclastogenesis.


Assuntos
Reabsorção Óssea , Fatores Reguladores de Interferon , Reabsorção da Raiz , Animais , Humanos , Camundongos , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Mutação , Fatores de Transcrição NFATC/genética , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Reabsorção da Raiz/genética , Reabsorção da Raiz/metabolismo
9.
Dev Comp Immunol ; 155: 105152, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38408717

RESUMO

Tilapia lake virus (TiLV) is an emerging virus that seriously threatens the tilapia industries worldwide. Interferon regulatory factors (IRFs), which are the crucial mediators regulating the response of interferon (IFN) to combat invading viruses, have not yet been reported in tilapia during TiLV infection. Here, six IRF (IRF1, IRF2, IRF4, IRF7, IRF8, and IRF9) homologs from tilapia were characterized and analyzed. These IRFs typically shared the conserved domains and phylogenetic relationship with IRF homologs of other species. Tissue distribution analysis showed that all six IRF genes were expressed in various tissues, with the highest expression in immune-related tissues. Furthermore, overexpression of IRFs in tilapia brain (TiB) cells significantly inhibited TiLV propagation, as evidenced by decreased viral segment 8 gene transcripts and copy numbers of viral segment 1. More importantly, all six IRF genes significantly enhanced the promoter activity of type I interferon-a3 (IFNa3) in TiB cells, suggesting that tilapia IRF genes serve as positive regulators in activating IFNa3. Surprisingly, the promoter activity of IFNa3 mediated by IRF genes was markedly inhibited post-TiLV infection, indicating that TiLV antagonized IRF-mediated IFN immune response. Taken together, six IRF genes of tilapia are highly conserved transcription factors that inhibit TiLV infection by activating the promoter of IFNa3, which is in turn restrained by TiLV. These findings broaden our knowledge about the functionality of IRF-mediated antiviral immunity in tilapia against TiLV infection and host-TiLV interaction, which lays a foundation for developing antiviral strategies in tilapia cultural industries.


Assuntos
Ciclídeos , Doenças dos Peixes , Tilápia , Viroses , Vírus , Animais , Interferons/metabolismo , Ciclídeos/genética , Ciclídeos/metabolismo , Filogenia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Vírus/metabolismo
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 150-156, 2024 Feb 10.
Artigo em Chinês | MEDLINE | ID: mdl-38311552

RESUMO

OBJECTIVE: To assess the prognostic value of methylation of interferon regulatory factor 6 (IRF6) gene promoter in patients diagnosed with Kidney renal clear cell carcinoma (KIRC). METHODS: The primary lesions of fifty KIRC patients who were diagnosed at the First Affiliated Hospital of Nanjing Medical University from January 2016 to January 2020 were collected. The expression of IRF6 protein was determined with an immunohistochemical method. The correlation between the level of IRF6 expression and survival and/or metastasis status was analyzed. The mRNA and protein levels of the IRF6 in KIRC and normal renal tissues were compared by using bioinformatic tools. The difference in the methylation rate of the IRF6 gene promoter between tumor and adjacent tissues was analyzed by searching the online databases. Statistical analysis was carried out for the methylation status of the IRF6 gene promoter region to select those negatively correlated with the overall survival (OS) among the patients. In vitro experiments were conducted with cell lines to verify the correlation between the status of promoter methylation and transcription level of the IRF6 gene. RESULTS: The mRNA and protein levels of the IRF6 gene in KIRC tissues were significantly lower than those of the normal controls, and this was more prominent in patients who had died or developed metastasis. The extent of IRF6 gene promoter methylation in the KIRC tissues was much higher compared with that of the adjacent normal renal tissues. There was a significant negative correlation between the methylation of the IRF6 gene promoter and mRNA level of the IRF6 (R = -0.52). The higher methylation degree in the IRF6 gene promoter regions cg12034118 and cg16030177, the shorter the OS and worse prognosis in the patients. Only twenty CpG sites in cg12034118 were confirmed to be highly methylated in KIRC cell lines. The transcription level of the IRF6 gene was upregulated in a time- and dose-dependent manner after the treatment with demethylation reagent 5-azadeoxycytidine. CONCLUSION: The methylation of IRF6 gene promoter in the renal tissues of KIRC patients is closely correlated with the OS. Cg12034118 may provide a promising biomarker for laboratory detection, and its high methylation rate has certain reference value for the prognosis.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Neoplasias Renais/genética , Carcinoma de Células Renais/genética , Prognóstico , Metilação de DNA , Fatores Reguladores de Interferon/genética , Rim/patologia , Regiões Promotoras Genéticas , RNA Mensageiro/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-38271298

RESUMO

Microglia play a critical role in the pathophysiology of Alzheimer's disease. They are involved in Aß-induced neuroinflammatory responses, regulating the production of inflammatory mediators. Interferon regulatory factor 5 (IRF5) plays a central role in inflammatory diseases in the periphery, the role of which in central nervous system remains elusive. This study aimed to investigate the role of IRF5 in Aß-induced neuroinflammation and the progression of Aß pathology. We found that Aß1-42 oligomers significantly increased the level of IRF5 in BV2 microglia. The levels of proinflammatory cytokines TNF-α, IL-1ß, and IL-6 were significantly upregulated with Aß treatment. IRF5 knockdown with siRNA in microglia significantly reduced the expression of these proinflammatory factors induced by Aß and promoted Aß phagocytosis. Besides, LC3 upregulation and p62 downregulation were observed in IRF5 knockdown microglia. This was also validated in APP/PS1 mice with IRF5 knockdown, leading to reduced Aß levels in the brain. We conclude that IRF5 mediates Aß-induced microglial inflammatory responses. IRF5 knockdown attenuated Aß-induced inflammatory responses and promoted the phagocytosis and autophagy of Aß by microglia.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos Transgênicos , Microglia/metabolismo , Fagocitose
12.
Mol Biol Rep ; 51(1): 97, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194130

RESUMO

BACKGROUND: Interferon regulatory factors (IRF-1 and IRF-2) are transcription factors widely implicated in various cellular processes, including regulation of inflammatory responses to pathogens, cell proliferation, oncogenesis, differentiation, autophagy, and apoptosis. METHODS: We have studied the expression of IRF-1, IRF-2 mRNAs by RT-PCR, cellular localization of the proteins by immunofluorescence, and expression of mRNAs of genes regulated by IRF-1, IRF-2 by RT-PCR in mouse bone marrow cells (BMCs) and mesenchymal stem cells (MSCs). RESULTS: Higher level of IRF-1 mRNA was observed in BMCs and MSCs compared to that of IRF-2. Similarly, differential expression of IRF-1 and IRF-2 proteins was observed in BMCs and MSCs. IRF-1 was predominantly localized in the cytoplasm, whereas IRF-2 was localized in the nuclei of BMCs. MSCs showed nucleo-cytoplasmic distribution of IRF-1 and nuclear localization of IRF-2. Constitutive expression of IRF-1 and IRF-2 target genes: monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), cyclooxygenase-2 (COX-2), matrix metalloproteinase-9 (MMP-9), and caspase-1 was observed in both BMCs and MSCs. MSCs showed constitutive expression of the pluripotency-associated factors, Oct3/4 and Sox-2. Lipopolysaccharide (LPS)-treatment of MSCs induced prominent cellular localization of IRF-1 and IRF-2. CONCLUSIONS: Our results suggest that IRF-1 and IRF-2 exhibit differential expression of their mRNAs and subcellular localization of the proteins in BMCs and MSCs. These cells also show differential levels of constitutive expression of IRF-1 and IRF-2 target genes. This may regulate immune-responsive properties of BMCs and MSCs through IRF-1, IRF-2-dependent gene expression and protein-protein interaction. Regulating IRF-1 and IRF-2 may be helpful for immunomodulatory functions of MSCs for cell therapy and regenerative medicine.


Assuntos
Medula Óssea , Fatores Reguladores de Interferon , Células-Tronco Mesenquimais , Animais , Camundongos , Células da Medula Óssea , Citoplasma , Fatores Reguladores de Interferon/genética
13.
Mol Med ; 30(1): 6, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195465

RESUMO

BACKGROUND: Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in preterm infants, characterised by compromised alveolar development and pulmonary vascular abnormalities. Emerging evidence suggests that regulatory T cells (Tregs) may confer protective effects on the vasculature. Knockdown of their transcription factor, interferon regulatory factor 4 (IRF4), has been shown to promote vascular endothelial hyperplasia. However, the involvement of Tregs and IRF4 in the BPD pathogenesis remains unclear. This study aimed to investigate the regulation of Tregs by IRF4 and elucidate its potential role in pulmonary vasculature development in a BPD mouse model. METHODS: The BPD model was established using 85% hyperoxia exposure, with air exposure as the normal control. Lung tissues were collected after 7 or 14 days of air or hyperoxia exposure, respectively. Haematoxylin-eosin staining was performed to assess lung tissue pathology. Immunohistochemistry was used to measure platelet endothelial cell adhesion molecule-1 (PECAM-1) level, flow cytometry to quantify Treg numbers, and Western blot to assess vascular endothelial growth factor (VEGFA), angiopoietin-1 (Ang-1), forkhead box protein P3 (FOXP3), and IRF4 protein levels. We also examined the co-expression of IRF4 and FOXP3 proteins using immunoprecipitation and immunofluorescence double staining. Furthermore, we employed CRISPR/Cas9 technology to knock down the IRF4 gene and observed changes in the aforementioned indicators to validate its effect on pulmonary vasculature development in mice. RESULTS: Elevated IRF4 levels in BPD model mice led to FOXP3 downregulation, reduced Treg numbers, and impaired pulmonary vascular development. Knockdown of IRF4 resulted in improved pulmonary vascular development and upregulated FOXP3 level. CONCLUSION: IRF4 may affect the protective role of Tregs in the proliferation of pulmonary vascular endothelial cells and pulmonary vascular development in BPD model mice by inhibiting the FOXP3 level.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Humanos , Lactente , Recém-Nascido , Camundongos , Displasia Broncopulmonar/genética , Modelos Animais de Doenças , Células Endoteliais , Fatores de Transcrição Forkhead/genética , Recém-Nascido Prematuro , Fatores Reguladores de Interferon/genética , Linfócitos T Reguladores , Fator A de Crescimento do Endotélio Vascular
14.
Oncoimmunology ; 13(1): 2296712, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38170159

RESUMO

Interferon regulatory factor 4 (IRF4) is a master transcription factor that regulates T helper cell (Th) differentiation. It interacts with the Basic leucine zipper transcription factor, ATF-like (BATF), depletion of which in CD4+ T cells abrogates acute graft-versus-host disease (aGVHD)-induced colitis. Here, we investigated the immune-regulatory role of Irf4 in a mouse model of MHC-mismatched bone marrow transplantation. We found that recipients of allogenic Irf4-/- CD4+ T cells developed less GVHD-related symptoms. Transcriptome analysis of re-isolated donor Irf4-/- CD4+ T helper (Th) cells, revealed gene expression profiles consistent with loss of effector T helper cell signatures and enrichment of a regulatory T cell (Treg) gene expression signature. In line with these findings, we observed a high expression of the transcription factor BTB and CNC homolog 2; (BACH2) in Irf4-/- T cells, which is associated with the formation of Treg cells and suppression of Th subset differentiation. We also found an association between BACH2 expression and Treg differentiation in patients with intestinal GVHD. Finally, our results indicate that IRF4 and BACH2 act as counterparts in Th cell polarization and immune homeostasis during GVHD. In conclusion, targeting the BACH2/IRF4-axis could help to develop novel therapeutic approaches against GVHD.


Assuntos
Colite , Doença Enxerto-Hospedeiro , Camundongos , Animais , Humanos , Colite/induzido quimicamente , Colite/genética , Linfócitos T Reguladores/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/metabolismo
15.
JCI Insight ; 9(3)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175709

RESUMO

Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease characterized by the expansion of the aortic wall. One of the most significant features is the infiltration of macrophages in the adventitia, which drives vasculature remodeling. The role of macrophage-derived interferon regulatory factor 5 (IRF5) in macrophage infiltration and AAA formation remains unknown. RNA sequencing of AAA adventitia identified Irf5 as the top significantly increased transcription factor that is predominantly expressed in macrophages. Global and myeloid cell-specific deficiency of Irf5 reduced AAA progression, with a marked reduction in macrophage infiltration. Further cellular investigations indicated that IRF5 promotes macrophage migration by direct regulation of downstream phosphoinositide 3-kinase γ (PI3Kγ, Pik3cg). Pik3cg ablation hindered AAA progression, and myeloid cell-specific salvage of Pik3cg restored AAA progression and macrophage infiltration derived from Irf5 deficiency. Finally, we found that IRF5 and PI3Kγ expression in the adventitia is significantly increased in patients with AAA. These findings reveal that the IRF5-dependent regulation of PI3Kγ is essential for AAA formation.


Assuntos
Túnica Adventícia , Aneurisma da Aorta Abdominal , Humanos , Túnica Adventícia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Macrófagos/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo
16.
Nat Commun ; 15(1): 319, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296975

RESUMO

Here we report the largest Asian genome-wide association study (GWAS) for systemic sclerosis performed to date, based on data from Japanese subjects and comprising of 1428 cases and 112,599 controls. The lead SNP is in the FCGR/FCRL region, which shows a penetrating association in the Asian population, while a complete linkage disequilibrium SNP, rs10917688, is found in a cis-regulatory element for IRF8. IRF8 is also a significant locus in European GWAS for systemic sclerosis, but rs10917688 only shows an association in the presence of the risk allele of IRF8 in the Japanese population. Further analysis shows that rs10917688 is marked with H3K4me1 in primary B cells. A meta-analysis with a European GWAS detects 30 additional significant loci. Polygenic risk scores constructed with the effect sizes of the meta-analysis suggest the potential portability of genetic associations beyond populations. Prioritizing the top 5% of SNPs of IRF8 binding sites in B cells improves the fitting of the polygenic risk scores, underscoring the roles of B cells and IRF8 in the development of systemic sclerosis. The results also suggest that systemic sclerosis shares a common genetic architecture across populations.


Assuntos
Predisposição Genética para Doença , Escleroderma Sistêmico , Humanos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Receptores de IgG/genética , 60488 , Escleroderma Sistêmico/genética , Polimorfismo de Nucleotídeo Único , Fatores Reguladores de Interferon/genética , Loci Gênicos
17.
Circ Res ; 134(2): 165-185, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38166463

RESUMO

BACKGROUND: Atherosclerosis is a globally prevalent chronic inflammatory disease with high morbidity and mortality. The development of atherosclerotic lesions is determined by macrophages. This study aimed to investigate the specific role of myeloid-derived CD147 (cluster of differentiation 147) in atherosclerosis and its translational significance. METHODS AND RESULTS: We generated mice with a myeloid-specific knockout of CD147 and mice with restricted CD147 overexpression, both in an apoE-deficient (ApoE-/-) background. Here, the myeloid-specific deletion of CD147 ameliorated atherosclerosis and inflammation. Consistent with our in vivo data, macrophages isolated from myeloid-specific CD147 knockout mice exhibited a phenotype shift from proinflammatory to anti-inflammatory macrophage polarization in response to lipopolysaccharide/IFN (interferon)-γ. These macrophages demonstrated a weakened proinflammatory macrophage phenotype, characterized by reduced production of NO and reactive nitrogen species derived from iNOS (inducible NO synthase). Mechanistically, the TRAF6 (tumor necrosis factor receptor-associated factor 6)-IKK (inhibitor of κB kinase)-IRF5 (IFN regulatory factor 5) signaling pathway was essential for the effect of CD147 on proinflammatory responses. Consistent with the reduced size of the necrotic core, myeloid-specific CD147 deficiency diminished the susceptibility of iNOS-mediated late apoptosis, accompanied by enhanced efferocytotic capacity mediated by increased secretion of GAS6 (growth arrest-specific 6) in proinflammatory macrophages. These findings were consistent in a mouse model with myeloid-restricted overexpression of CD147. Furthermore, we developed a new atherosclerosis model in ApoE-/- mice with humanized CD147 transgenic expression and demonstrated that the administration of an anti-human CD147 antibody effectively suppressed atherosclerosis by targeting inflammation and efferocytosis. CONCLUSIONS: Myeloid CD147 plays a crucial role in the growth of plaques by promoting inflammation in a TRAF6-IKK-IRF5-dependent manner and inhibiting efferocytosis by suppressing GAS6 during proinflammatory conditions. Consequently, the use of anti-human CD147 antibodies presents a complementary therapeutic approach to the existing lipid-lowering strategies for treating atherosclerotic diseases.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , 60574 , Fator 6 Associado a Receptor de TNF/metabolismo , Aterosclerose/metabolismo , Inflamação/genética , Camundongos Knockout , Fenótipo , Apolipoproteínas E , Fatores Reguladores de Interferon/genética , Camundongos Endogâmicos C57BL
18.
Int J Biol Macromol ; 256(Pt 1): 128319, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000607

RESUMO

Interferon regulatory factor (IRF) family proteins are key transcription factors involved in vital physiological processes such as immune defense. However, the function of IRF in invertebrates, especially in marine shellfish is not clear. In this study, a new IRF gene (CfIRF2) was identified in the Zhikong scallop, Chlamys farreri, and its immune function was analyzed. CfIRF2 has an open reading frame of 1107 bp encoding 368 amino acids. The N-terminus of CfIRF2 consists of a typical IRF domain, with conserved amino acid sequences. Phylogenetic analysis suggested close evolutionary relationship with shellfish IRF1 subfamily proteins. Expression pattern analysis showed that CfIRF2 mRNA was expressed in all tissues, with the highest expression in the hepatopancreas and gills. CfIRF2 gene expression was substantially enhanced by a pathogenic virus (such as acute viral necrosis virus) and poly(I:C) challenge. Co-immunoprecipitation assay identified CfIRF2 interaction with the IKKα/ß family protein CfIKK1 of C. farreri, demonstrating a unique signal transduction mechanism in marine mollusks. Moreover, CfIRF2 interacted with itself to form homologous dimers. Overexpression of CfIRF2 in HEK293T cells activated reporter genes containing interferon stimulated response elements and NF-κB genes in a dose-dependent manner and promoted the phosphorylation of protein kinases (JNK, Erk1/2, and P38). Our results provide insights into the functions of IRF in mollusks innate immunity and also provide valuable information for enriching comparative immunological theory for the prevention of diseases in scallop farming.


Assuntos
NF-kappa B , Pectinidae , Humanos , Animais , NF-kappa B/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Filogenia , Células HEK293 , Pectinidae/genética , Imunidade Inata/genética
19.
Biochim Biophys Acta Rev Cancer ; 1879(1): 189061, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141865

RESUMO

Canonically, the transcription factor interferon regulatory factor 5 (IRF5) is a key mediator of innate and adaptive immunity downstream of pathogen recognition receptors such as Toll-like receptors (TLRs). Hence, dysregulation of IRF5 function has been widely implicated in inflammatory and autoimmune diseases. Over the last few decades, dysregulation of IRF5 expression has been also reported in hematologic malignancies and solid cancers that support a role for IRF5 in malignant transformation, tumor immune regulation, clinical prognosis, and treatment response. This review will provide an in-depth overview of the current literature regarding the mechanisms by which IRF5 functions as either a tumor suppressor or oncogene, its role in metastasis, regulation of the tumor-immune microenvironment, utility as a prognostic indicator of disease, and new developments in IRF5 therapeutics that may be used to remodel tumor immunity.


Assuntos
Regulação da Expressão Gênica , Fatores Reguladores de Interferon , Humanos , Prognóstico , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Imunidade Adaptativa
20.
Future Oncol ; 19(37): 2465-2479, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38054394

RESUMO

Aim: To elucidate the clinicopathological and prognostic values of interferon regulatory factor (IRF) family genes in acute myeloid leukemia (AML). Patients & methods: Differential expression analysis and survival analysis from several reliable databases were conducted and further validated using patients with AML. Results: The expression level of IRF1/2/4/5/7/8/9 in patients with AML was upregulated, while IRF3/6 expression was downregulated. High IRF1/7/9 expression indicated a worse overall survival rate. Conclusion: Overexpression of IRF1/7/9 may be associated with poor survival in patients with AML, suggesting that the IRF family may be a promising therapeutic target.


Assuntos
Fatores Reguladores de Interferon , Leucemia Mieloide Aguda , Humanos , Prognóstico , Fatores Reguladores de Interferon/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...